More Trade, Less Diffusion: Technology Transfers and the Dynamic Effects of Import Liberalization

Gustavo de Souza, Ruben Gaetani, and Marti Mestieri

The ideas presented here do not represent those of the Federal Reserve System or the Federal Reserve Bank of Chicago

- Canonical View: More trade, More diffusion
 - $\circ~$ Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

- Canonical View: More trade, More diffusion
 - Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

- Canonical View: More trade, More diffusion
 - Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

- Canonical View: More trade, More diffusion
 - Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

- Canonical View: More trade, More diffusion
 - Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

- Canonical View: More trade, More diffusion
 - Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023); among many others

 $\circ~$ Implication: larger gains from trade in the long-run

Implication: Trade openness leads to ECONOMIC GROWTH

- Canonical View: More trade, More diffusion
 - $\circ~$ Firms learn from exporters or international suppliers

Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019,2023); among many others

- $\circ~$ Implication: larger gains from trade in the long-run
- Weak Empirical Evidence to the Canonical View:
 - $\circ~$ Correlation between openness to trade and technology adoption

Comin and Hobijn(2004, 2010); Comin et al. (2013); Comin and Mestieri (2018)

• Trade increases firm-level TFP

Pavcnik (2002), Harrison and Rodríguez-Clare (2010)

This Paper: Effect of Tariffs on the Diffusion of Technology

• Question:

• How does trade policy affect the diffusion of technologies across countries?

This Paper: Effect of Tariffs on the Diffusion of Technology

• Question:

• How does trade policy affect the diffusion of technologies across countries?

• Policy Variation:

• Brazilian trade liberalization: in the 90s, tariffs went from 30% to 10% (Dix-Carneiro and Kovak (2017))

This Paper: Effect of Tariffs on the Diffusion of Technology

• Question:

• How does trade policy affect the diffusion of technologies across countries?

• Policy Variation:

• Brazilian trade liberalization: in the 90s, tariffs went from 30% to 10% (Dix-Carneiro and Kovak (2017))

• Measures of diffusion:

1. Technology transfers from foreign firms to Brazil

e.g., patent transfers, technical consulting, R&D support, and others

2. Patent citations by Brazilian firms to foreign firms

Result: More Trade, Less Diffusion

- 1. Tariffs increase technology transfers from foreign firms to Brazilian firms
- 2. Tariffs increase citations
 - to firms transferring technology
 - by firms in the same zip code of those receiving technology

Result: More Trade, Less Diffusion

- 1. Tariffs increase technology transfers from foreign firms to Brazilian firms
- 2. Tariffs increase citations
 - to firms transferring technology
 - by firms in the same zip code of those receiving technology
- 3. Importance:
 - more trade, less diffusion
 - knowledge diffusion is linked to technology transfers

Example: Nippon Steel technology transfer before the liberalization

Before Trade Liberalization

Nippon Steel

Example: Nippon Steel technology transfer before the liberalization

Before Trade Liberalization

Gerdau S.A.

Technology Transfer

Steel Bars Production

Nippon Steel

Example: Diffusion to local firms

Before Trade Liberalization

Gerdau S.A.

Technology Transfer

Steel Bars Production

Nippon Steel

Citation

Trade-off: Technology transfer \times export to Brazil

- Model: adding technology transfers to Buera and Oberfield (2020)
 - \circ Trade-off: technology transfer \times export to Brazil

Firms Transfer Technology if Tariffs are High

High Import Tariffs

Foreign Firms:

Profit of Transferring technology > Profit Exporting

Nippon Steel

• Technology Transfer to Brazil 🕈

Low Import Tariffs

Firms Transfer Technology if Tariffs are High

High Import Tariffs

Foreign Firms:

Profit of Transferring technology > Profit Exporting

Nippon Steel

CSN

Brazilian Firms:

- Learn and build on foreign technology
- Foreign technology diffuses
- 🔹 Citation to foreign patents 🕈

·-----

Firms Export if Tariffs are Low

High Import Tariffs

Foreign Firms:

- Profit of Transferring technology > Profit Exporting
- Technology Transfer to Brazil 🕇

Brazilian Firms:

- Learn and build on foreign technology
- Foreign technology diffuses
- Citation to foreign patents 🕈

Low Import Tariffs

Foreign Firms:

- Profit of Transferring technology < Profit Exporting
- Technology Transfer to Brazil 🕹

Nippon Steel

CSN

Brazilian Firms:

- Don't learn from foreign firms
- Citation to foreign patents 4

CSN

High Import Tariffs

Foreign Firms:

- Profit of Transferring technology > Profit Exporting
- Technology Transfer to Brazil 🕇

Foreign Firms:

- Profit of Transferring technology < Profit Exporting
- Technology Transfer to Brazil 🕹

Low Import Tariffs

Nippon Steel

CSN

Brazilian Firms:

- Don't learn from foreign firms
- Citation to foreign patents ↓

Gerdau S.A.

CSN

Brazilian Firms:

- · Learn and build on foreign technology
- Foreign technology diffuses
- Citation to foreign patents †

Optimal Policy: Trade Liberalization + Subsidy to Tech. Transfer

DATA

Data: Universe of Technology Transfers

- Since the 1970s, the Patent office and the Central Bank record all international royalty payments associated to improvement in production
- Types of Technology Transfers
 - 1. Patent or trademark transfer
 - 2. Know-How transfer, e.g., technical consulting, R&D support, trade secrets, and others

EMPIRICS

Empirics: Gravity of Citations and Tech. Transfers

• Empirical Model:

$$\mathbf{y}_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

- $\circ y_{o,s,t}$: outcome of origin country o, sector s, in year t
- \circ technology transfers in next 3 years from country *o* to sector *s*
- \circ citations in next 3 years to country *o* by sector *s*

Empirics: Gravity of Citations and Tech. Transfers

• Empirical Model:

$$y_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

 $\circ \tau_{o,s,t}$: import tariff in Brazil against country *o*, sector *s*, in year *t*

• Empirical Model:

$$y_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

- $\circ \eta_{s,t}$: identification and isolating channel
- \circ Identification
 - · productivity shock, industrial policy, technological progress
- $\circ~$ Isolating diffusion:
 - · removes effect of tariff on competition, firm exit, and other margins unrelated to diffusion

• Empirical Model:

$$y_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

 \circ $\eta_{o,t}$: captures intellectual property agreements and country shocks

• Empirical Model:

$$y_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

- \circ β : effect of tariff on diffusion from a particular country-sector pair
- $\circ \begin{array}{c} \textbf{Canonical View:} \tau_{o,s,t} \uparrow \Longrightarrow imports \downarrow \Longrightarrow learning from foreigners \downarrow \Longrightarrow \beta < o \\ \text{(Eaton and Kortum (1999); Buera and Oberfield (2020); Santacreu (2015, 2022); Cai, Li and Santacreu (2020); Lind and Ramondo (2019, 2023), Ramondo and Rodríguez-Clare(2010), among many others)} \\ \end{array}$

• Empirical Model:

$$y_{o,s,t} = \beta \tau_{o,s,t} + \eta_{o,s} + \eta_{s,t} + \eta_{o,t} + X'_{o,s,t} \kappa + \epsilon_{o,s,t}$$

where

• Identification: instrument by Boehm, Levchenko, and Pandalai-Nayar (2023)

Empirical Results

Tariffs Increase Technology Transfers

	(1)	(2)	(3)
	IHS N.	IHS	IHS N.
	Tech.	N.Unique	Unique
		Licensees	Licensors
Tariff	0.157**	0.131**	0.154 ^{**}
	(0.0712)	(0.0643)	(0.0707)
Ν	1,229,689	1,229,689	1,229,689

Impulse Response of Technology Transfers to Tariffs

Tariffs Increase Citation to Foreign Firms

	(1)	(2)
	IHS	At Least
	Citations	One Cit.
Tariff	0.577***	0.411***
	(0.140)	(0.0825)
	(01210)	(0.002))

Impulse Response of Citations to Tariffs

Empirical Results

- Tariffs increase:
 - international technology transfers
 - \circ citations to foreign patents
- \implies More Trade, Less Diffusion

Citations are Directed to Firms Transferring Technologies

	(1)	(2)
	IHS. Cit. to	IHS Cit. to
	Licensor	Non-Licensor
Tariff	0.565***	0.206
	(0.132)	(0.126)
N	1.2.29.689	1,229,689

Technology Transfers Diffuse Locally

	(1)	(2)	(3)	(4)
	IHS. Cit.	IHS. Cit.	IHS Cit.	IHS Cit.
	Same Zip	Diff. Zip	Same City	Diff. City
Tariff	0.312***	0.206*	0.351***	0.136
	(0.120)	(0.121)	(0.122)	(0.120)
Ν	1,229,689	1,229,689	1,229,689	1,229,689

Citations are Made by Firms without Connection to Foreign Markets

	(1)	(2)	(3)	(4)	(5)	(6)
	IHS Cit. by	IHS Cit. by				
	Tech.	Non-Tech.				
	Licensees	Licensees		Importers		Exporters
Tariff	0.164	0.452***				
	(0.106)	(0.133)				
Ν	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689

Citations are Made by Firms without Connection to Foreign Markets

	(1)	(2)	(3)	(4)	(5)	(6)
	IHS Cit. by	IHS Cit. by	IHS Cit. by	IHS Cit. by		
	Tech.	Non-Tech.	Importers	Non-		
	Licensees	Licensees		Importers		Exporters
Tariff	0.164	0.452***	0.179	0.461***		
	(0.106)	(0.133)	(0.110)	(0.133)		
Ν	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689

Citations are Made by Firms without Connection to Foreign Markets

	(1)	(2)	(3)	(4)	(5)	(6)
	IHS Cit. by	IHS Cit. by	IHS Cit. by	IHS Cit. by	IHS Cit. by	IHS Cit. by
	Tech.	Non-Tech.	Importers	Non-	Exporters	Non-
	Licensees	Licensees		Importers		Exporters
Tariff	0.164 (0.106)	0.452 ^{***} (0.133)	0.179 (0.110)	0.461 ^{***} (0.133)	0.173 (0.110)	0.460 ^{***} (0.133)
Ν	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689	1,229,689

Are Markets that Send More Technology Receiving More Citations?

- Results suggest that citation to foreign firms increase because of technology transfers
- If that is true, markets sending more technologies should receive more citations
- Long difference model:

$$\Delta y_{o,s} = \beta (Z_{o,s}) \Delta \tau_{o,s}^{inst} + \eta_{o,s} + X_{o,s}' \kappa + \epsilon_{o,s}$$

- $\beta(Z_{o,s})$ reduced form effect as function of $Z_{o,s}$
- $\circ~~eta~~(ext{Vagner and Athey}$ (2018), Athey and Imbens (2019))

Markets Sending More Technology Receive More Citations

Figure: Correlation Between the Effect of Tariffs on Technology Transfers and on Citations

Empirical Results

- Tariffs increase:
 - \circ international technology transfers
 - \circ citations to foreign patents
- ⇒ More Trade, Less Diffusion
- Citations are:
 - $\circ~$ directed to firms transferring technology to Brazil
 - $\circ\;$ made by firms in the same zip code of those receiving technology
 - o markets sending more technology receive more citations
- \implies Transferred technology spreads among Brazilian firms

Alternative Explanations

- **FDI**:
 - tariffs do not affect FDI

Alternative Explanations

	(1)	(2)	(3)	(4)	(5)	(6)
	IHS N.For.	IHS	II (At Least 1	IHS N.For.	IHS	II (At Least 1
	Partners	N.Firms	Firm)	Partners,3y	N.Firms	Firm,3y)
		F.Owned			F.Owned,3y	
Tariff	-0.0436	-0.0249	-0.0236	-0.0495	-0.0284	0.00282
	(0.0287)	(0.0239)	(0.0227)	(0.0636)	(0.0542)	(0.0476)
Ν	1,053,236	1,053,236	1,053,236	1,053,236	1,053,236	1,053,236

Alternative Explanations

• FDI:

 \circ tariffs do not affect FDI

• Tariffs on Inputs:

• results are the same after controlling for input tariff

• Tariffs Against Brazil:

• results are the same after controlling for tariffs against Brazil

Model

Model: Diffusion through Technology Transfers

- Augment Buera and Oberfield (2020)
- Important elements:
 - 1. foreign firms face a trade-off between transferring technology and exporting to Brazil
 - 2. Brazilian firms learn from exporters and from technology transfers
- An increase in tariff:
 - \circ increases technology transfers;
 - o increases diffusion because firms learn more from foreign technologies

Calibration: From Micro to Macro

- Two important moments:
 - $\circ~$ learning from technology transfers relative to learning from exporters
 - $\circ~$ increase in technology transfers as response to import tariff
- Calibration strategy:
 - \circ generate tariff changes in the model
 - $\circ~$ run in model generated data the same regressions
 - $\circ~$ calibrate model to reproduce effect of tariff on citations and on technology transfers

QUANTITATIVE RESULTS

Liberalization: Static Gains but Dynamic Losses

Diffusion from Technology Transfers Matter for Welfare!

Gains from Trade are Larger with Subsidy to Technology Transfers

Your View Before this Talk:

Implication: Trade openness leads to ECONOMIC GROWTH

Increase in Tariffs

Implication: Trade openness should be accompanied by a subsidy to technology transfers